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Introduction
Despite almost 30 years of intensive research, a 
human immunodeficiency virus (HIV) vaccine 
remains elusive. Effective vaccines generally stimu-
late protective immunity similar to that which 
occurs during natural infection. However, natu-
rally acquired immunity against HIV infection may 
not exist, which presents an unprecedented chal-
lenge for vaccine development. The mechanism by 
which an HIV vaccine might confer protection 
therefore remains uncertain, and an effective vac-
cine may require induction of an immune response 
that is significantly different from that seen during 
natural infection [Johnston and Fauci, 2011]. The 
extreme diversity of HIV presents another chal-
lenge to vaccine design. Considering its relatively 
recent origin, the diversity of HIV, and HIV-1 in 
particular, is extraordinary. Within the main HIV-1 
subgroup, Group M, there are nine clades as well 
as dozens of recombinant forms, and clades can 
vary up to 42% at the amino acid level [Hemelaar, 
2012]. A vaccine immunogen derived from a par-
ticular clade may therefore be ineffective against 
other clades, posing a significant obstacle to the 
creation of a global HIV vaccine.

In this review, we examine the current status of 
HIV vaccine research by reviewing the results of 

candidate HIV vaccine efficacy trials and the 
immunologic principles that guided them. We 
also review novel approaches that seek to build 
upon the strategies used in those trials. Four vac-
cine concepts have been evaluated in efficacy tri-
als to date. The VAX004 and VAX003 trials 
evaluated the first concept, a protein subunit vac-
cine. The second concept, a recombinant adeno-
virus vector, was evaluated in the Step and HIV 
Vaccine Trials Network (HVTN) 503/Phambili 
trials. The third concept, a canarypox vector 
prime followed by a protein subunit boost, was 
evaluated in the RV144 trial. The fourth concept, 
a DNA prime followed by a recombinant adeno-
virus vector boost, was recently evaluated in the 
HVTN 505 trial. These trials are presented in 
chronological order, and their results are summa-
rized in Table 1. We conclude this review with a 
discussion of additional novel strategies that have 
the potential to significantly advance HIV vaccine 
development.

Protein subunit vaccines: the VAX trials and 
the search for neutralizing antibodies
The first HIV vaccine candidates to enter clinical 
trials were protein subunit vaccines. Prior to the 
development of protein subunit vaccines, both 
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Table 1.  HIV vaccine efficacy trials.

Efficacy 
trial

Vaccine Population N Efficacy Other significant 
results

Immune 
response

Immune 
correlates of 
risk

VAX004 AIDSVAX 
B/B (rgp120 
immunogens)

Primarily high-
risk MSM

5403 None [Flynn et al. 
2005]

N/A Weak nAb 
response 
[Gilbert et al. 
2010]

N/A

VAX003 AIDSVAX 
B/E (rgp120 
immunogens)

Injection drug 
users

2546 None 
[Pitisuttithum 
et al. 2006]

N/A Weak nAb 
response 
[Montefiori 
et al. 2012]

N/A

Step MRKAd5 HIV-
1 (rAd5 vector 
expressing Gag, 
Pol, and Nef)

Primarily high-
risk MSM

3000 None; trial halted 
after meeting 
prespecified 
futility boundaries 
[Buchbinder et al. 
2008]

Significantly 
increased risk 
of HIV infection 
in men who 
were both Ad5-
seropositive and 
uncircumcised, 
which waned 
with time since 
vaccination 
[Duerr et al. 
2012]

CD8+ T-cell 
response 
detected in 
the majority 
of vaccinees, 
although 
weak and 
of narrow 
breadth 
[McElrath 
et al. 2008]

N/A

HVTN 
503/
Phambili

Same as Step Primarily 
heterosexuals

  801 None; enrollment 
halted after lack 
of efficacy seen in 
Step [Gray et al. 
2011b]

N/A Similar to 
Step [Gray 
et al. 2011b]

N/A

RV144 ALVAC (canarypox 
vector expressing 
Env, Gag, and Pol) 
prime followed 
by AIDSVAX B/E 
boost

Primarily 
low-risk 
heterosexuals

16,402 31.2% overall 
efficacy for 
prevention of 
HIV-1 infection 
in the modified 
intention-to-
treat analysis 
[Rerks-Ngarm 
et al. 2009]; no 
subsequent effect 
on viremia or CD4 
count in vaccinees 
who were infected 
[Rerks-Ngarm 
et al. 2012]

68% efficacy for 
low or medium 
risk participants, 
no efficacy in the 
high-risk group; 
efficacy was 
highest over the 
first 12 months 
and then fell 
rapidly [Robb 
et al. 2012]

Weak nAb 
response 
[Montefiori 
et al. 2012]. 
Moderate 
CD8+ and 
CD4+ T- cell 
response; the 
CD4+ T-cell 
response 
was directed 
against the 
V2 region of 
Env [de Souza 
et al. 2012]

Binding of IgG 
to the V1 and 
V2 regions of 
Env correlated 
with 
protection; 
protection was 
mitigated by 
the presence 
of plasma 
IgA directed 
against Env 
[Haynes et al. 
2012a]

HVTN 
505

VRC-HIVDNA016-
00-VP (DNA 
expressing Gag, 
Pol, Nef, and Env) 
prime followed by 
VRC-HIVADV014-
00-VP (rAd5 
expressing Gag, 
Pol, and Env) 
boost

High-risk MSM 2504 None; trial halted 
after meeting 
prespecified 
futility boundaries

Awaiting final 
trial results

Awaiting final 
trial results

N/A

HIV, human immunodeficiency virus; HVTN, HIV Vaccine Trials Network; IgG, immunoglobulin G; MSM, men who have sex with men; nAb, neutral-
izing antibody; rgp, recombinant glycoprotein; rAd5, recombinant adenovirus serotype 5.

 by guest on January 24, 2014tav.sagepub.comDownloaded from 

http://tav.sagepub.com/
http://tav.sagepub.com/


 Cohen and Dolin 

http://tav.sagepub.com	 101

attenuated and inactivated vaccines had been 
tested in nonhuman primates (NHPs), but nei-
ther concept advanced to human trials [Girard 
et  al. 2011]. Compared with other vaccine 
approaches such as viral vectors and DNA plas-
mids, protein subunits offer the advantage of con-
siderable experience related to vaccine design and 
production, since an effective protein subunit vac-
cine has been developed for influenza A and B 
infections. Protein subunit vaccines for HIV are 
based on the HIV envelope. The HIV envelope is 
composed of glycoproteins, gp120 and gp41, 
which are cleaved from a gp160 precursor. The 
mature envelope spike forms as a trimer, com-
posed of three gp120/gp41 complexes. Both 
recombinant gp160 (rgp160) and recombinant 
gp120 (rgp120) monomers were studied as 
immunogens in early HIV vaccine clinical trials. 
An rgp160 vaccine induced neutralizing antibod-
ies against the homologous vaccine strain but not 
against heterologous strains, and stimulated lim-
ited antibody responses in general [Dolin et  al. 
1991; Keefer et  al. 1994]. An rgp120 vaccine 
demonstrated somewhat improved immuno-
genicity in a phase I trial, including some neutral-
izing activity against a heterologous strain 
[Schwartz et al. 1993]. A similar rgp120 immuno-
gen derived from a different HIV-1 strain (MN) 
conferred protection against heterologous strains 
in chimpanzees [Berman et  al. 1996], and was 
found to be safe and immunogenic in humans 
[Migasena et al. 2000]. This immunogen served 
as the basis for the AIDSVAX vaccines used in the 
VAX004 and VAX003 trials.

VAX004 was the first HIV vaccine efficacy trial 
and began enrollment in 1998. It was conducted 
mostly in high-risk men who have sex with men 
(MSM) in North America and the Netherlands, 
and evaluated the AIDSVAX B/B vaccine. 
AIDSVAX B/B contained rgp120 immunogens 
from strains MN and GNE8. VAX003, which 
began enrollment in 1999, was conducted in 
injection drug users in Thailand. It evaluated 
AIDSVAX B/E, which contained rgp120 immu-
nogens from strains MN and A244. MN was a 
laboratory-adapted strain, while GNE8 and A244 
were primary isolates. The primary isolates were 
added as a result of evidence demonstrating that 
laboratory-adapted viruses differ from primary 
isolates in a number of respects, including the use 
of the CXCR4 coreceptor rather than CCR5, and 
increased sensitivity to neutralization. Efficacy 
against acquisition of infection was not demon-
strated in either trial (Figures 1 and 2) [Flynn 
et  al. 2005; Pitisuttithum et  al. 2006]. The 

Figure 1.  Kaplan–Meier curve from VAX004 showing 
time to human immunodeficiency virus type 1 (HIV-1) 
infection. (Reproduced from Flynn et al. [2005] with 
permission from Oxford University Press.)

Figure 2.  Kaplan–Meier curve from VAX003 showing 
time to human immunodeficiency virus type 1 (HIV-1) 
infection, p = 0.99. (Reproduced from Pitisuttithum 
et al. [2006] with permission from Oxford University 
Press.)
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vaccines used in both trials elicited antibodies 
capable of neutralizing tier 1 viruses, which are 
sensitive to neutralization, but had little activity 
against tier 2 viruses, which are more resistant to 
neutralization [Gilbert et  al. 2010; Montefiori 
et al. 2012]. These trials demonstrated that rgp120 
monomers elicited limited neutralizing antibody 
responses and failed to protect against HIV infec-
tion in a high-risk population.

Current HIV protein subunit immunogens aim to 
elicit improved neutralizing antibody responses 
by more accurately representing the native viral 
envelope. The rgp120 monomers used in the VAX 
trials had the advantage of being relatively easy to 
produce, but lacked conformational structures of 
the native envelope trimer. Many of the critical 
epitopes that are targets of neutralizing antibod-
ies, including the CD4-binding site, are confor-
mational in nature and highly dependent on the 
three-dimensional structure of the envelope 
trimer [Gorny et al. 2005; Pantophlet and Burton, 
2006; McElrath and Haynes, 2010; Moore et al. 
2011]. A number of methods have been used in 
an attempt to stabilize recombinant trimers and 
thus make them suitable for production on a large 
scale [Phogat and Wyatt, 2007]. However, most 
recombinant trimers tested to date have demon-
strated only marginally better immunogenicity 
compared with monomers [Grunder et al. 2005; 
Kim et al. 2005; Beddows et al. 2007], likely as a 
result of an inability to accurately represent the 
characteristics of the native envelope trimer. 
Another feature of the native viral envelope that 
may play an important role in the induction of 
neutralizing antibodies is glycosylation. While 
HIV envelope glycans have long been thought to 
play a role in shielding underlying epitopes from 
neutralizing antibodies, it has been appreciated 
that these glycans can serve as targets of neutrali-
zation as well [Kwong and Mascola, 2012; Moore 
et al. 2012; Lavine et al. 2012]. For proper glyco-
sylation of protein subunits, immunogens need to 
be produced in specific human cell lines [Raska 
et al. 2010]; these cell lines were not utilized to 
produce the AIDSVAX vaccines. Recently, a sta-
ble envelope trimer has been developed that more 
closely represents antigenic properties of the 
native envelope trimer, including glycosylation. 
This trimer has been shown to elicit improved 
neutralizing antibody responses compared with 
monomers in guinea pigs [Kovacs et  al. 2012]. 
The manufacturing of clinical grade material is 
under way, and the trimer will likely enter phase I 
trials in the next 1–2 years.

A recent major advance with important implica-
tions for vaccine design has been the detection of 
highly potent broadly neutralizing antibodies 
(bnAbs) against HIV-1. Examples include PG9 
and PG16, with a breadth of around 80% [Walker 
et  al. 2009], VRC-01, with a breadth of around 
90% [Wu et al. 2010], and 10E8, which neutral-
izes 98% of tested viruses [Huang et  al. 2012]. 
Other bnAbs have been described that do not 
attain the same degree of neutralization breadth 
but are almost 10-fold more potent than PG9, 
PG16, and  VRC01 [Walker et al. 2011]. Structural 
modification techniques have also been employed 
to further enhance the potency and breadth of 
another bnAb,  VRC07 [Kwon et  al. 2012]. The 
bnAbs described to date share a number of char-
acteristics. All recognize one of four different sites 
on the viral envelope spike: the CD4 binding site 
on gp120, the first and second variable regions 
(V1/V2) on gp120, the glycan-V3 site on gp120, 
or the membrane-proximal external region of 
gp41. In addition, all bnAbs have unusual fea-
tures: either an uncommonly long complementa-
rity-determining region, extensive somatic 
mutation, or both [Burton et al. 2012; Kwong and 
Mascola, 2012]. Passive immunization with 
bnAbs has been shown to confer robust protec-
tion against chimeric simian/human immunodefi-
ciency virus (SHIV) infection in NHPs [Moldt  
et al. 2012; Hessell et al. 2009, 2010].

Novel strategies will likely be required to develop 
vaccines capable of stimulating bnAbs against HIV-
1. The unusual features of bnAbs described above 
are highly atypical and only rarely occur in the 
course of ordinary antibody production. In addi-
tion, a number of bnAbs are polyreactive to host 
antigens, which serves as yet another obstacle to 
their development [McElrath and Haynes, 2010]. 
Even in the setting of chronic infection with HIV-1, 
bnAbs only arise in 10–30% of individuals after a 
period of 2–4 years [Gray et al. 2011a; Mikell et al. 
2011; Moore et al. 2011]. The ability of traditional 
vaccine strategies to stimulate bnAbs is therefore 
uncertain, since the immune system may not gener-
ate such antibodies without extensive somatic 
mutation or may suppress the production of these 
antibodies. A new strategy termed B-cell-lineage 
vaccine design seeks to increase the elicitation of 
bnAbs by driving antibody responses along the 
desired B-cell maturation pathway [Haynes et  al. 
2012b]. B-cell-lineage vaccine design consists of 
identifying B cells that produce bnAbs and then 
inferring how those cells evolved from their naïve 
B-cell ancestor. Vaccine immunogens would then 
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be designed to direct B-cell maturation accordingly. 
Interestingly, the antigen that stimulates the mature 
B cell may differ from the antigen that initially acti-
vated the naïve B cell. Similarly, different antigens 
may be required at each stage of B-cell develop-
ment, resulting in a vaccination strategy consisting 
of a series of different immunogens. The evolution 
of the bnAb CH103 in a chronically infected indi-
vidual has recently been detailed and may serve as 
a first step to guide the development of a vaccine 
based on the B-cell-lineage approach [Liao et  al. 
2013]. Another possible approach to increase the 
probability of eliciting bnAbs involves the use of 
adjuvants to activate enzymes that regulate somatic 
mutation. Activation-induced cytidine deaminase 
(AID) in particular has been extensively studied 
and may serve as a target for such an approach [Alt 
et al. 2013].

Viral vector vaccines: step and the cellular 
immune response
Cellular immunity has been shown to play an 
important role in the immune response against 
HIV infection. This was demonstrated in simian 
immunodeficiency virus (SIV) infection in rhesus 
macaques, where depletion of CD8+ T cells by 
administration of an anti-CD8 monoclonal anti-
body to chronically infected macaques resulted in 
a marked increase in viremia and disease progres-
sion [Schmitz et al. 1999]. Studies of elite control-
lers of HIV-1 infection have also shown the 
importance of cellular immunity in controlling 
viremia. Certain human leukocyte antigen (HLA) 

alleles, particularly HLA-B*57, HLA-B*27, and 
HLA-B*5701, have been correlated with the abil-
ity to control viral replication [Carrington and 
O’Brien, 2003], consistent with the importance of 
T cells in this effect. Indeed, differences in HLA-
B*27-restricted CD8+ T cells between individuals 
who control disease and those who do not have 
recently been reported [Chen et  al. 2012]. Of 
note, natural killer cells may also play a role in the 
HLA-mediated control of viral replication [Fadda 
et al. 2011], and it may be important to investigate 
the natural killer cell response as well in the 
assessment of immunogenicity of vaccine candi-
dates. An approach to elicit a cellular immune 
response by vaccination is the use of recombinant 
viral vectors, in which a virus is engineered to 
express a gene of interest. Viral vectors tested as 
HIV vaccine candidates include viruses that are 
replication incompetent or poorly competent of 
replication in mammalian cells (canarypox and 
fowlpox), or viruses that have been made replica-
tion incompetent or poorly competent through 
the deletion of genes or through in vitro adapta-
tion [adenoviruses, New York Vaccinia virus strain 
(NYVAC), and Modified Vaccinia Ankara 
(MVA)]. Of these vectors, recombinant adenovi-
rus serotype 5 (rAd5) was found to be particularly 
immunogenic, and was selected as the vector for 
the Step and HVTN 503/Phambili trials, which 
were the first efficacy trials to evaluate an HIV 
vaccine designed to stimulate T-cell responses.

Both Step and HVTN 503/Phambili evaluated the 
same vaccine, an rAd5 vector expressing genes for 
Gag, Pol, and Nef from clade B viruses. Step was 
conducted primarily in high-risk MSM in North 
and South America, the Caribbean, and Australia. 
The trial was stopped at the first interim analysis 
after meeting prespecified futility boundaries for 
efficacy. In addition, a trend towards increased 
rates of HIV infection was found in male vaccinees 
who were Ad5 seropositive at baseline, uncircum-
cised, or both [Buchbinder et  al. 2008]. In 
extended follow-up, men who were both uncir-
cumcised and Ad5 seropositive were found to have 
a statistically significant increased risk of HIV 
infection, which waned with time from vaccina-
tion (Figure 3) [Duerr et  al. 2012]. The mecha-
nism behind the increased rates of infection in 
these subjects remains unclear [Barouch, 2010; 
Duerr et al. 2012]. While the rAd5 vaccine used in 
Step was found to induce CD8+ T-cell responses 
in a majority of vaccinees, the responses were weak 
and only directed against a limited number of 
epitopes [McElrath et al. 2008]. In vaccinees who 

Figure 3.  Kaplan–Meier curve from extended 
follow-up of the Step study, showing time to human 
immunodeficiency virus type 1 (HIV-1) infection 
in adenovirus serotype 5 (Ad5)-seropositive, 
uncircumcised (uncirc) men. p = 0.02 for the first 18 
months of follow up. (Reproduced from Duerr et al. 
[2012] with permission from Oxford University Press.)
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became infected, no effect on viral load, CD4 
count, or AIDS-free survival was demonstrated 
after 4 years. However, in a subset of infected sub-
jects with protective HLA alleles, mean viral load 
was lower over time in vaccine recipients com-
pared with placebo recipients [Fitzgerald et  al. 
2011]. The mechanism behind this effect is uncer-
tain, but it raises the possibility that individuals 
expressing protective alleles may benefit from the 
vaccine. A second trial, HVTN 503/Phambili, was 
conducted in primarily low-risk heterosexuals in 
South Africa. Enrollment was halted after 
increased rates of HIV infection were observed in 
Step, and only 801 of a planned 3000 participants 
were enrolled [Gray et al. 2011b]. A higher rate of 
HIV infections was observed in vaccinees com-
pared with placebo recipients, but the difference 
was not statistically significant.

Following the results of Step, vectors based on 
other adenovirus serotypes with lower seropreva-
lence rates than Ad5 have been evaluated. 
Recombinant vectors using adenovirus serotype 
26 (Ad26) and adenovirus serotype 35 (Ad35) 
were found to be immunogenic in phase I studies 
[Baden et al. 2012; Keefer et al. 2012]. In addition 
to adenovirus vectors, a number of poxvirus vec-
tors have also been evaluated. A canarypox vector 
was found to have limited immunogenicity in 
phase I and II trials [Goepfert et al. 2005; Russell 
et al. 2007]. NYVAC and MVA appear to be more 
immunogenic than canarypox and are currently 
being evaluated in multiple early-phase trials 
[Gómez et  al. 2012]. Studies in animal models 
using combinations of MVA, rAd26, and rAd35 
have generally demonstrated improved protection 
against infection and superior cellular immune 
responses compared with homologous regimens 
[Barouch et  al. 2012; Ratto-Kim et  al. 2012]. 
Although only HIV vaccines based on viral vectors 
that are incapable or poorly capable of replication 
have been studied in clinical trials to date, replica-
tion-competent vectors may be more immuno-
genic and are also being investigated [Excler et al. 
2010]. Another avenue of research into vaccines 
designed to elicit a CD8+ T-cell response has 
focused on the difference between effector mem-
ory and central memory CD8+ T cells. HIV vac-
cine candidates have generally elicited a central 
memory T-cell response, but it has been hypothe-
sized that an effector memory T-cell response may 
be able to better suppress viremia following infec-
tion. Effector memory T-cell responses are primar-
ily elicited through the presence of persistent 
infections, such as infection by cytomegalovirus 

(CMV). In a recent study, a CMV-vectored vac-
cine was administered to rhesus macaques that 
were then challenged with a highly pathogenic SIV 
strain, SIVmac239. Following repeated mucosal 
challenges, the majority of macaques that received 
the CMV-vectored vaccine demonstrated pro-
found control of viremia, compared with none of 
the macaques that received a DNA/rAd5 vaccine 
[Hansen et al. 2012].

Heterologous prime-boost regimens: 
RV144 and a description of non-neutralizing 
antibodies
Heterologous prime-boost regimens seek to aug-
ment and broaden immune responses by combin-
ing different vaccine strategies. This approach was 
employed in RV144, in which a canarypox viral 
vector prime expressing Env, Gag, and Pol 
(ALVAC) was followed by an AIDSVAX B/E 
boost (the same protein subunit vaccine used in 
VAX003). The vaccines were administered in 
Thailand primarily to low-risk heterosexual men 
and women. Vaccine efficacy against acquisition 
of infection was found to be 31.2% in the modi-
fied intention-to-treat analysis (Figure 4) [Rerks-
Ngarm et al. 2009]. In vaccinees who did become 
infected, no effect on CD4+ T-cell counts or viral 
load was observed [Rerks-Ngarm et al. 2012]. A 
subsequent analysis suggested that vaccine effi-
cacy was significantly correlated with risk: effi-
cacy was 68% for participants who maintained 
low or medium risk throughout the study, but 
only 5% in the high-risk group [Robb et al. 2012]. 
In addition, efficacy appeared to be highest dur-
ing the first 12 months and then fell rapidly. In an 
analysis of immune correlates of risk, binding of 
immunoglobulin G (IgG) to V1/V2 was associ-
ated with a reduced risk of infection, while plasma 
IgA directed against Env abrogated this protec-
tion [Haynes et al. 2012a]. This latter effect may 
have been a result of the interference of IgA with 
IgG effector functions, which has previously been 
observed in the setting of both infection and can-
cer [Griffiss and Goroff, 1983; Jarvis and Griffiss, 
1991; Mathew et al. 1981]. Indeed, it has recently 
been reported that some Env-directed IgA anti-
bodies isolated from RV144 vaccinees are capable 
of blocking IgG-mediated antibody-dependent 
cellular cytotoxicity (ADCC) effector function 
[Tomaras et  al. 2013]. In additional immuno-
genicity analyses, the RV144 regimen was found 
to elicit a weak neutralizing antibody response 
[Montefiori et  al. 2012], and only a moderate 
T-cell response, although the CD4+ T-cell 
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response that was elicited was directed against V2 
[de Souza et al. 2012]. The possible effect of the 
immune response against V2 was also demon-
strated by an analysis of breakthrough viral 
strains: vaccine efficacy against viruses matching 
the vaccine at amino acid position 169 was 48%, 
and vaccine efficacy against viruses mismatching 
the vaccine at position 181 was 78% [Rolland 
et al. 2012]. Both of these amino acids are located 
within the V2 region of Env.

The immune correlates analyses of RV144 did 
not identify neutralizing antibody or cellular 
immune responses that were correlated with 
reduction of risk, which raises the possibility that 
non-neutralizing antibodies against V1/V2 may 
play a role in protection. Following the results of 
RV144, non-neutralizing antibodies against V2 
were also found to correlate with protection 
against a stringent SIV challenge in rhesus 
macaques vaccinated with DNA/MVA, rAd26/
MVA, or MVA/rAd26 regimens [Barouch et  al. 
2012]. While the mechanism of protection in 
these trials remains unclear, non-neutralizing 
antibodies against V1/V2 may confer protection 
through effector functions such as ADCC, which 
occur in conjunction with cells of the innate 
immune system [Robinson, 2013]. The four IgG 

subclasses differ in their ability to mediate these 
effector functions, and IgG3 generally has the 
greatest activity [van de Winkel and Anderson, 
1991]. Interestingly, while the antibody response 
in RV144 was weaker overall than VAX003, pre-
liminary data suggest that the response in RV144 
was skewed towards IgG3, which was not the case 
in VAX003 [Chung et al. 2012].

DNA vaccines and HVTN 505
DNA vaccines consist of a plasmid encoding a 
protein of interest. A DNA vaccine can deliver the 
same genes as a live-vectored vaccine without 
immunity developing against the vector, which 
may inhibit expression of the insert [Donnelly 
et al. 1997]. While DNA vaccines in general dem-
onstrated promise in animal models, early candi-
date DNA vaccines were found to be poorly 
immunogenic when tested in humans for a num-
ber of viruses, including HIV [MacGregor et al. 
1998; Ferraro et al. 2011]. Later generation DNA 
vaccines have incorporated various strategies to 
improve immunogenicity, including electropora-
tion and the use of molecular adjuvants [Baden 
et al. 2011]. A number of DNA HIV vaccine can-
didates are currently being evaluated, mostly in 
combination with viral vectors in heterologous 

Figure 4.  Kaplan–Meier curve from RV144 showing time to human immunodeficiency virus type 1 (HIV-1)  
infection in the modified intention-to-treat analysis. (Reproduced from Rerks-Ngarm et al. [2009] with 
permission of the Massachusetts Medical Society.)
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prime-boost regimens. In a phase I trial, a heter-
ologous DNA/rAd5 regimen demonstrated 
improved CD4+ T-cell responses and increased 
CD8+ T-cell interleukin 2 production compared 
with a homologous rAd5/rAd5 regimen [Cox 
et al. 2008]. In another phase I trial, a DNA/rAd5 
regimen elicited significantly improved T-cell and 
antibody responses compared with either DNA or 
rAd5 alone [Koup et al. 2010]. A DNA/MVA reg-
imen was similarly found to improve the T-cell 
immune response compared with MVA alone, 
although interestingly the antibody response was 
superior when MVA was used without DNA 
priming [Goepfert et al. 2011].

The most recently conducted HIV vaccine effi-
cacy trial, HVTN 505, is a phase IIb trial that 
evaluated a DNA prime followed by a rAd5-vec-
tored boost in MSM in the United States. The 
DNA plasmid expressed Gag, Pol, Nef, and Env, 
and the rAd5 boost expressed Gag, Pol, and Env. 
This was in contrast to the rAd5 vaccine used in 
Step, which did not express Env. In an attempt to 
avoid the possibility of increased risk of HIV 
infection that occurred using the rAd5 vector in 
Step, only men who were circumcised and Ad5 
seronegative were eligible for inclusion. The 
HVTN 505 trial enrolled 2504 subjects, but on 
25 April 2013, the HVTN announced that the 
trial was halted for lack of efficacy because futility 
criteria were met for both primary endpoints: 
HIV acquisition and postacquisition viral load 
setpoint (the press release can be viewed at http://
hvtn.org/505-announcement-25April2013.html). 
At the time the trial was halted, 27 HIV infections 
had occurred in vaccine recipients compared with 
21 HIV infections in placebo recipients; however, 
the rates of HIV infections in vaccinees and pla-
cebo recipients were not statistically significantly 
different. Participants in the HVTN 505 trial will 
be followed closely for additional study endpoints. 
Further data and analyses should be forthcoming 
and may aid in the interpretation of the primary 
results.

Insights from the transmission event
The transmission of HIV-1 and the properties of 
transmitted viruses are being studied in detail to 
determine whether such information can inform 
development of an HIV vaccine. During chronic 
infection, a quasispecies of virus resides within a 
single individual [Korber et  al. 2001]. However, 
studies of sexual transmission have found that in 
approximately 80% of cases only a single viral 

strain is transmitted [Keele et al. 2008; Abrahams 
et al. 2009]. Investigation of this ‘bottleneck’ may 
identify viral properties that affect the ability of a 
virus to establish infection. Indeed, a number of 
studies have found that transmitted viruses, also 
known as founder viruses, appear to have particu-
lar features. In an early study of three mother–
infant pairs, the infants’ viral sequences were less 
diverse than the mothers’, and a conserved 
N-linked glycosylation site within the V3 region 
found in each of the mothers’ sequences was 
absent in the infants’ sequences [Wolinsky et al. 
1992]. Transmitted clade C viruses were found to 
have shorter, less glycosylated envelope variable 
loops than viruses present during chronic infec-
tion, and were more sensitive to neutralization 
[Derdeyn et al. 2004]. In addition, the glycan at 
amino acid position 332 may be significantly 
underrepresented in transmitted clade C viruses 
compared with viruses present during chronic 
infection [Moore et al. 2012]. In a cohort of clade 
D and A transmission pairs, transmitted strains 
appeared to be more closely related to variants 
found early during the donor’s course of infection 
rather than to variants circulating in the donor 
near the time of transmission [Redd et al. 2012].

The above findings are complicated by the fact 
that both the mode of transmission and viral clade 
appear to play a role in the determination of the 
number of transmitted viruses and their particu-
lar features. While only a single variant is trans-
mitted in approximately 80% of heterosexual 
transmission events, only 46% of transmitted 
viruses appeared to derive from a single variant in 
a cohort of MSM [Gottlieb et al. 2008]. A similar 
finding was also noted for MSM who were 
included in the study by Keele and colleagues 
cited above. In rhesus macaques, intravenous 
inoculation of SIV resulted in a more complex 
founder population than intravaginal inoculation 
[Greenier et al. 2001]. Even the bottleneck pre-
sent during heterosexual transmission may not 
operate under certain conditions. A study con-
ducted in a small heterosexual African cohort 
found that a single viral strain was transmitted in 
the vast majority of cases; however, more viral 
strains appeared to be transmitted in the presence 
of genital infection [Haaland et  al. 2009]. This 
suggests that an intact mucosal barrier may be 
necessary to restrict the genetic diversity of the 
infecting virus. While the particular characteris-
tics found in clade C transmitted viruses were 
also found in clade A viruses, the same character-
istics were not noted in clade B or D viruses 
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[Chohan et al. 2005; Frost et al. 2005; Sagar et al. 
2009]. A specific viral signature that distinguishes 
transmitted viruses across all clades and modes of 
transmission has yet to be found. If transmitted 
viruses are in fact appreciably different from other 
HIV strains, future vaccines could be designed to 
particularly target these viruses.

The mosaic sequence insert
The diversity of HIV presents a significant chal-
lenge to the ultimate goal of creating a global vac-
cine. In an attempt to address this problem, 
mosaic sequences designed for insertion into viral 
vector vaccines have been developed. These 
genetic sequences were created using computer 
algorithms to maximize the coverage of potential 
T-cell epitopes from worldwide HIV-1 strains 
[Fischer et  al. 2007]. T-cell epitopes are amino 
acid sequences presented on the surface of 
infected cells by HLA class 1 molecules and rec-
ognized by CD8+ T cells. By maximizing the rep-
resentation of global viral strains, mosaic 
sequences may elicit immune responses capable 
of recognizing viruses from multiple clades. 
Studies in rhesus macaques have shown that 
mosaic sequences increase the breadth and depth 
of the T-cell response compared with consensus 
or natural sequences [Barouch et al. 2010; Santra 
et al. 2010]. However, mosaic sequences have not 
yet been evaluated in humans, and the immune 
response they will elicit remains unknown. Phase 
I clinical trials using mosaic sequence inserts in 
orthopox-vectored and adenovirus-vectored vac-
cines are planned in the coming year.

Vectored immunoprophylaxis
Vectored immunoprophylaxis is an approach that 
provides bnAbs by employing a viral vector con-
taining inserts of immunoglobulin genes. This 
bypasses the difficult task of utilizing immunogens 
to elicit these unusual antibodies. The vector 
employed in a study of this approach was adeno-
associated virus (AAV), into which genes were 
inserted that code for a bnAb against HIV-1. AAV 
has been extensively studied as a potential gene 
therapy vector because it is not known to cause dis-
ease and has been engineered so that it does not 
integrate into the human genome. Intramuscular 
administration of an AAV vector with human 
immunoglobulin genes into a humanized mouse 
resulted in prolonged expression of bnAbs and 
conferred protection against high-dose intravenous 
HIV challenges [Balazs et  al. 2012]. The AAV 

vector is relatively inexpensive to produce and 
offers the possibility of long-lasting protection. 
However, this approach also presents concern 
about the ability to halt gene expression if toxicities 
related to immunoglobulin production were to 
occur. Methods to address this concern are cur-
rently being investigated.

Conclusion
Only four HIV vaccine concepts have undergone 
efficacy trials, and while only one has demon-
strated efficacy, all four have generated important 
information. The VAX004/VAX003 trials indi-
cated that a subunit vaccine composed of recom-
binant gp120 monomers was not effective in a 
high-risk population. An Ad5 vector vaccine failed 
to confer protection in the Step trial and appeared 
to be associated with an increased risk of HIV-1 
infection in certain populations. The addition of a 
DNA prime and the inclusion of genes expressing 
Env to the Ad5 vector in HVTN 505 also failed to 
confer protection. A prime-boost regimen con-
sisting of a canarypox vector prime and an rgp120 
boost (RV144) demonstrated modest efficacy 
(31.2%), albeit for a short period of time. While 
the components of the immune response respon-
sible for protection in RV144 are yet to be fully 
determined, initial studies have suggested that an 
antibody response to the envelope V1/V2 region 
may have played a role. Genetic sequences in the 
V2 region were also found to be associated with 
vaccine efficacy in an analysis of breakthrough 
viral strains. Interestingly, vaccination in both 
VAX003 and Step appeared to impact the 
sequences of breakthrough HIV strains as well 
[Shmelkov et al. 2011; Rolland et al. 2011]. This 
suggests that the vaccines used in those trials may 
have placed some selective pressure on transmit-
ted viruses. The correlation between an HIV vac-
cine’s ability to exert genetic pressure on 
transmitted viral strains and its ability to confer 
protection remains to be determined.

RV144 demonstrated efficacy in a low-risk heter-
osexual population; however, no other trial to 
date has been completed in such a population 
(Table 1). The role of population risk factors in 
the ultimate success of the regimen used in RV144 
is therefore unclear. As discussed above, a single 
viral strain is transmitted in the majority of het-
erosexual transmission events. Thus, a candidate 
vaccine administered to this population may only 
be required to inhibit a single viral strain, which 
could potentially enhance its effectiveness. The 
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role of neutralizing antibodies in the protective 
effect observed in RV144 also remains unclear. 
Although the generation of neutralizing antibod-
ies appeared to be weak, it is possible that a low 
level of neutralizing antibodies was able to confer 
protection in this particular setting [Bar et  al. 
2012].

Further studies are planned to confirm and extend 
the results of RV144. These studies will also evalu-
ate viral-vector prime and protein-subunit boost 
regimens, and will incorporate novel vectors, 
inserts, and protein subunits. Vectors such as Ad26, 
MVA, and NYVAC have been found to be highly 
immunogenic, and future trials will evaluate these 
vectors both alone and in combination. The mosaic 
sequence insert, which may elicit a broader 
immune response than natural HIV-1 sequence 
inserts, will also be studied in upcoming trials. A 
novel recombinant glycoprotein trimer will be eval-
uated as a protein boost, and may elicit a more 
potent neutralizing antibody response than rgp120 
monomers. Because the protection observed in 
RV144 was of limited duration, future studies eval-
uating similar regimens may incorporate extended 
immunization schedules, particularly to stimulate 
antibody responses, in an attempt to increase the 
duration of protection.

The discovery of highly potent bnAbs against 
HIV-1 is an observation of great importance for 
the development of an HIV vaccine. However, 
traditional vaccine strategies may be unable to 
elicit these antibodies. Novel strategies such as 
B-cell-lineage vaccine design and vectored immu-
noprophylaxis are being studied to elicit or pro-
vide these antibodies.

The HIV vaccine efficacy trials conducted to date 
have demonstrated that a safe and effective HIV 
vaccine is possible, and have made important con-
tributions to our understanding of the path towards 
the development of such a vaccine. Future progress 
will depend on an iterative relationship between 
findings from preclinical studies and from properly 
designed, efficiently conducted clinical trials.
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